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ABSTRACT
Artificial intelligence (AI) is making a significant impact across various industries, including healthcare, where it is driving 
innovation and increasing efficiency. In the fields of Quantitative Clinical Pharmacology (QCP) and Translational Sciences (TS), 
AI offers the potential to transform traditional practices through the use of agentic workflows—systems with different levels 
of autonomy where specialized AI agents work together to perform complex tasks, while keeping “human in the loop.” These 
workflows can simplify processes, such as data collection, analysis, modeling, and simulation, leading to greater efficiency and 
consistency. This review explores how these AI-powered agentic workflows can help in addressing some of the current chal-
lenges in QCP and TS by streamlining pharmacokinetic and pharmacodynamic analyses, optimizing clinical trial designs, and 
advancing precision medicine. By integrating domain-specific tools while maintaining data privacy and regulatory standards, 
well-designed agentic workflows empower scientists to automate routine tasks and make more informed decisions. Herein, we 
showcase practical examples of AI agents in existing platforms that support QCP and biomedical research and offer recommen-
dations for overcoming potential challenges involved in implementing these innovative workflows. Looking ahead, fostering col-
laborative efforts, embracing open-source initiatives, and establishing robust regulatory frameworks will be key to unlocking the 
full potential of agentic workflows in advancing QCP and TS. These efforts hold the promise of speeding up research outcomes 
and improving the efficiency of drug development and patient care.
JEL Classification: Artificial Intelligence and Machine Learning

1   |   Introduction

For more than three decades, artificial intelligence (AI) and 
machine learning (ML) have been utilized in Quantitative 
Clinical Pharmacology (QCP) and Translational Sciences 
(TS) [1–3]. From early computational models assisting in drug 
metabolism studies to sophisticated algorithms predicting 
clinical outcomes, AI/ML methodologies have evolved signifi-
cantly, becoming valuable assets for data analysis, predictive 

modeling, and informed decision-making [4–6]. Recently, 
large language models (LLMs) have emerged as powerful AI 
systems capable of processing and generating human-like text, 
offering even greater capabilities for data synthesis, analysis, 
and interpretation [7]. However, despite their potential, LLMs 
present certain challenges, such as reproducibility issues, 
concerns over data and information provenance, and critical 
data privacy considerations for both patient and proprietary 
information [8]. Additionally, because LLMs are generally 
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designed for a wide range of tasks, they often lack the domain-
specific expertise required in specialized fields like QCP 
and TS, leading to the necessity for fine-tuning or real-time 
retrieval-augmented generation (RAG), though these do not 
always produce optimal results [9].

To address these challenges, the concept of AI agents and 
agentic workflows has been introduced and explored in vari-
ous fields [10–16]. AI agents are programs designed to perform 
specific tasks with varying degrees of autonomy, and when 
integrated into agentic workflows, they collaborate to achieve 
complex objectives more efficiently. Prominent figures in AI 
have underscored the potential of these workflows. For in-
stance, Yann LeCun, Chief AI Scientist at Meta, envisions 
that “In the future, all human interaction with the digital 
world will be through AI agents” [17]. Similarly, Andrew Ng, 
renowned AI expert and founder of DeepLearning.AI, antici-
pates a dramatic expansion of AI's capabilities due to agentic 
workflows, stating in 2024 the following, “I expect that the set 
of tasks AI could do will expand dramatically this year because 
of agentic workflows” [18].

In this review, we look at how agentic workflows can address 
the challenges of traditional, time-consuming processes in QCP 
and TS. By combining multiple LLMs with specialized tools 
and methods, these workflows create a more efficient and reli-
able system. We will explain what AI agents are and how they 
function within these agentic workflows, while also sharing 
examples of how they are being implemented in platforms that 
support QCP and biomedical research. Our goal is to show how 
these innovative approaches can empower scientists to work 
more effectively, automate repetitive tasks, and speed up the 
pace of research.

2   |   Historical Context: Evolution of AI in QCP and 
TS

AI and ML have been part of QCP and TS since the early 1990s, 
where they were primarily used for tasks such as pharmacoki-
netic modeling, dose optimization, and drug interaction pre-
dictions [1–3, 19, 20]. Early AI models were often rule-based 
systems, which relied heavily on predefined algorithms to 
process structured data and generate outcomes. While these 
systems provided valuable insights, they were limited by their 
inability to adapt to new information or context and therefore 
were not applicable in dynamic clinical environments.

Building upon these earlier models, the 2000s witnessed a 
major shift with the introduction of deep neural networks 
and more advanced ML techniques [21]. These models could 
learn from data, make more accurate predictions, and handle 
complex datasets, including unstructured data like clinical 
notes and imaging results. This allowed for better modeling 
of biological systems and patient responses. However, these 
advanced models introduced new challenges, particularly 
around model interpretability, data privacy, and regulatory 
acceptance [22, 23]. The complexity of neural networks made 
it difficult for clinicians and regulators to understand the 
decision-making processes and raised concerns about trans-
parency and trustworthiness.

In recent years, LLMs, which are very large deep learning 
models, have gained prominence due to their ability to process 
large amounts of natural language data, making them invalu-
able for tasks such as literature review, clinical report genera-
tion, and patient data synthesis [24]. LLMs like GPT-3.5 [25], 
(i.e., ChatGPT) have demonstrated remarkable capabilities in 
understanding and generating human-like text, facilitating 
the analysis of medical records and scientific publications 
[26]. Yet, despite their potential, LLMs, applied off the shelf, 
currently struggle with domain-specific applications in QCP 
and TS. They lack the precision and reliability required for 
critical tasks, such as interpreting complex pharmacokinetic 
data or accurately predicting drug interactions without ex-
tensive domain-specific training [5, 27]. Moreover, concerns 
around data privacy arise when using LLMs, as they may 
inadvertently expose sensitive patient information during 
processing.

To address these challenges and meet the specialized knowl-
edge requirements of fields like QCP and TS, agentic work-
flows have been developed—a new paradigm that shifts from 
relying on single, general-purpose AI models to orchestrating 
multiple specialized AI agents. These AI agents are designed 
to perform specific tasks and can be integrated into a cohe-
sive workflow that mirrors the complex processes of drug de-
velopment and translational research. By enabling targeted 
problem-solving and modular adaptability, agentic workflows 
harness the strengths of AI while mitigating issues related to 
data privacy and regulatory compliance. This approach em-
beds domain knowledge directly into AI agents, enhancing 
precision and reliability. For instance, specialized agents can 
be fine-tuned with proprietary datasets under strict privacy 
controls, ensuring compliance with regulatory standards.

3   |   Defining AI Agents and Their Anatomy in 
Agentic Workflows

In this section, we define common terms and characteristics re-
lated to AI agents, as summarized in Figure 1.

3.1   |   AI Agents

An AI agent is a system that performs tasks by interacting with 
its environment and takes actions to achieve specific goals. 
Unlike traditional AI systems that react to predefined instruc-
tions, AI agents exhibit a high level of autonomy and adapt-
ability, enabling them to proactively engage in complex and 
dynamic scenarios. While there is not a universally accepted 
definition for agents powered by LLMs, they are generally de-
signed to mimic human decision-making and problem-solving 
capabilities. AI agents can operate with varying degrees of 
autonomy:

•	 Autonomous Agents: Fully independent systems that per-
form tasks without human intervention.

•	 Semi-autonomous Agents: Systems that operate inde-
pendently for some tasks but require human input or ap-
proval for certain decisions.
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•	 Collaborative Agents: Agents that work alongside humans 
or other agents, making decisions with human insight or 
approvals.

AI agents can process structured and unstructured data, adapt-
ing their behavior based on changing information. Ideally, they 
learn from new data and user feedback, updating their models to 
improve performance over time. In the context of QCP and TS, 
AI agents can perform various tasks, such as reading from and 
writing to databases using natural language prompts, generat-
ing code or invoking tools based on instructions, summarizing 
documents and literature, and interacting with team members 
to provide domain-specific information (e.g., drug–drug inter-
actions, benefit–risk assessments).

3.2   |   Agent Teams

An Agent Team is a group of specialized AI agents designed to 
interact and collaborate to complete complex tasks. Each agent 
within the team utilizes task-specific or domain-specific LLMs, 
tailored for particular functions. By coordinating their efforts, 
agent teams can handle multifaceted challenges more efficiently 
than individual agents acting alone can. For instance, in PK anal-
ysis, one agent might focus on data extraction, another on model 
development, and a third on result interpretation.

3.3   |   Agent Swarms

An Agent Swarm consists of multiple agent teams working 
together to solve highly complex tasks. This hierarchical 

structure allows for scalability and the division of labor across 
numerous specialized agents and teams, mirroring the col-
laborative nature of human organizations in large projects. 
In drug development, an agent swarm might coordinate ac-
tivities across different phases, from target identification and 
validation to clinical trial management and post-marketing 
surveillance.

To fully leverage the potential of agentic workflows, it is essen-
tial to understand the fundamental structure—or “anatomy”—
of the AI agents operating within these systems (Figure 2). An 
AI agent in this context comprises several interconnected com-
ponents that enable it to complete tasks with different levels of 
autonomy, make informed decisions, and continually learn from 
its environment [28], as described below.

3.4   |   The LLM/Foundation Model: The Brain

At the core of every AI agent lies a LLM, or a foundation model, 
functioning as the “brain” of the system. These models provide 
foundational intelligence and language comprehension capabili-
ties, allowing the agent to process and generate human-like text, 
understand complex instructions, and make decisions based on 
extensive training data. While LLMs have traditionally focused 
on natural language processing, foundation models extend these 
capabilities by integrating multimodal data, including images, 
audio, and video, which enrich the agent's understanding of its 
environment. In QCP and TS, these capabilities can empower 
agents to interpret scientific literature, clinical trial protocols, 
and patient data, and to leverage diverse data sources for ad-
vanced analyses and generating valuable insights.

FIGURE 1    |    A schematic illustrating how autonomous and semi-autonomous agents collaborate in teams and swarms to perform diverse tasks in 
quantitative clinical pharmacology and translational science. Individual agents, each with specialized capabilities (e.g., natural language processing, 
code generation, workflow automation), can be grouped to tackle complex objectives, ultimately forming larger “swarms” that coordinate efforts at 
scale. DDIs, drug–drug interactions; EHRs, electronic health records; LIMS, laboratory information management system; RWD, real-world data.

Agents
Autonomous or semi-autonomous 
entities acting independently to

achieve a goal

Agent Team
Specialized agents, each designed
for specific tasks, grouped together 

to solve a task

Agent Swarm
Teams coordinating actions to

achieve a common goal

Proficient in Natural Language 
Interaction for code generation
• Code generation,models, 

visualizations

Research Focused
• Literature Review
• Domain Expertise
• Training

Proficient in Natural Language 
Interactionwith database APIs
• Clinical database, LIMS 

systems, Genomics data
• Network graphs, EHRs, RWD

Designed for Workflow 
Automations
• Reporting, tables,

figures, interactivity,
Content reuse

Team of two agents

Team of four agents

Team of three agents

A team of 3 specialized agents
working to perform a task

Multiple Teams working together 
on a common task

Multi Agent Framework for Quantitative Clinical Pharmacology and Translational Science Systems

Optimized for
Patient/Caregiver
Interaction
• DDIs, education

Agent Pool

 17528062, 2025, 3, D
ow

nloaded from
 https://ascpt.onlinelibrary.w

iley.com
/doi/10.1111/cts.70188, W

iley O
nline L

ibrary on [27/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 12 Clinical and Translational Science, 2025

3.5   |   Memory Module: Storing and Recalling 
Information

The memory feature allows the AI agent to remember and use 
information from past interactions, which helps it keep context 
during ongoing tasks. This means the agent can learn from pre-
vious experiences, getting better over time. It also allows for 
more personalized assistance by recalling what the user has 
done before, making sure there is consistency in projects that in-
volve multiple steps or take place over a longer period. Memory 
can be short-term, retaining information during a single task, 
or long-term, preserving knowledge across multiple interactions 
and projects.

3.6   |   Profile: Defining Agent Behavior  
and Specialization

An agent's profile outlines its role, behavior, and specific ca-
pabilities. This includes its area of specialization (such as PK 
modeling expert or clinical trial designer), communication style 
suitable for interactions with scientists and clinicians, adher-
ence to ethical guidelines, and compliance with regulatory stan-
dards. The profile ensures that the agent's responses and actions 
are consistent, appropriate, and aligned with user expectations 
in both QCP and TS domains.

3.7   |   Planning Module: Transforming Objectives 
Into Tasks

The planning module enables the agent to break down complex 
goals into smaller, manageable tasks. By looking at the overall 

objectives, the agent figures out the steps needed to reach them, 
prioritizes tasks, and adjusts the plan as new information comes 
in. For instance, when planning a clinical trial, the agent might 
organize tasks like defining patient inclusion criteria, select-
ing appropriate endpoints, and determining optimal dosing 
regimens.

3.8   |   Action Module: Utilizing Tools and Resources

The action module allows the AI agent to engage with its envi-
ronment and carry out tasks, often by using different tools or 
connecting to application programming interfaces (APIs). This 
feature broadens the range of tasks the agent can handle. In 
QCP and TS, for example, the agent might pull data from clin-
ical trial or genomic databases, run simulations using PK/PD 
modeling software, perform statistical analyses with specialized 
computational tools, or retrieve real-time data from electronic 
health records.

3.9   |   Self-Regulation Module: Error Detection, 
Correction, and Continuous Learning

In addition to the core modules described above, many AI agents 
incorporate a self-regulation module that monitors their per-
formance. This module is responsible for detecting errors and 
anomalies, initiating corrective measures, and learning from 
mistakes through multi-step internal checks. Unlike conven-
tional systems that simply throw an error when encountering a 
problem, the self-regulation module enables AI agents to auton-
omously resolve issues or propose alternative solutions to contin-
uously improve their performance over time.

FIGURE 2    |    A conceptual illustration of an AI agent's five key components—memory, profile, planning, action, and self-regulation—working in 
tandem with a large language model (LLM) or foundation model (FM). Each component supports the agent's ability to store context, define its role, 
break down tasks, execute solutions, and adapt its behavior. API, application programming interface.
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4   |   Implementing Agentic Workflows in QCP and 
TS

Agentic workflows bring together AI agents with existing tools, 
processes, and expert knowledge in a coordinated system. Unlike 
traditional workflows that sometimes depend on a single LLM, 
agentic workflows utilize multiple specialized agents working to-
gether within a coordinated framework to improve performance 
and adaptability (see Table 1). A key feature of agentic workflows 
is the integration of “tool use,” where agents are programmed to 
trigger additional tools or data calls as needed. This capability 
allows for greater flexibility and accuracy in completing tasks, 
as agents can leverage the strengths of existing domain-specific 
tools and data sources. While the concept remains relatively new, 
these workflows are already being used in hospital systems and 
simulation environments [11].

An ideal agentic workflow seamlessly integrates across an orga-
nization's existing systems, enhancing overall efficiency while le-
veraging the existing scientific knowledge and expertise within the 
field to ensure accuracy and relevance. These workflows capitalize 
on and optimize automated processes that have already been devel-
oped, thereby improving operational efficiency. Transparency and 
reproducibility are crucial, as they play a vital role in establishing 
trust with users and stakeholders. Furthermore, data privacy is 
safeguarded by ensuring that data storage and handling are con-
ducted within secure and appropriate systems. A crucial aspect of 
agentic workflows is the inclusion of a memory component, which 
allows the workflow to learn and improve over time through con-
tinuous use. By adhering to these principles, agentic workflows can 
significantly enhance the capabilities of QCP and TS, fostering a 
more integrated, efficient, and trustworthy analytical environment.

An Illustration of the agentic workflow that we envision for QCP 
and TS is shown in Figure 3. This workflow integrates several key 
components, including domain experts, task-specific agents, and 
teams, diverse data sources, and advanced analytic tools.

4.1   |   Components of Agentic Workflows for QCP 
or TS

4.1.1   |   Domain Experts

At the heart of QCP/TS agentic workflows are domain ex-
perts—such as clinical pharmacologists, translational sci-
entists, and pharmacometricians—who initiate tasks and 
provide critical oversight. They review the data and code 
utilized by the agents, ensuring that all analyses and reports 
meet the highest standards of accuracy and reliability. Their 
approval is essential for maintaining the integrity of the work-
flow, as they bring specialized knowledge that guides the 
agents toward meaningful and relevant outcomes.

4.1.2   |   Task-Specific Agents and Teams

To improve efficiency and accuracy, agentic workflows use 
task-specific agents, each designed for particular tasks. These 
agents are trained and fine-tuned to handle specific jobs, 
making them highly skilled at what they do. By selecting 
agents tailored to the specific requirements of each task, the 
workflow benefits from a customized approach that enhances 
overall performance and effectiveness.

4.1.3   |   Data Sources

The data sources employed in these workflows are varied and 
application-dependent. They encompass clinical data from on-
going or previous medicine programs, scientific literature, and 
other external knowledge bases. Additionally, translational 
data sources such as pharmacokinetics, biomarkers, “omics,” 
digital, and imaging data are incorporated alongside real-
world data (RWD) from electronic health records, medical and 
prescription claims, and safety reporting systems.

TABLE 1    |    Comparison of agentic workflows and traditional workflows.

Characteristic AI agentic workflows Traditional workflows

Autonomy High; AI agents handle tasks autonomously, 
semi-autonomously, or collaboratively

Low; manual human-driven processes

Learning Adaptive; agents learn and improve from feedback Static; updated manually based on periodic reviews

Speed Faster; agents work continuously Slower; constrained by human availability

Complexity Handles complex tasks via advanced algorithms Struggles with high complexity without more effort

Scalability Highly scalable with automation Limited by human resources and effort

System integration 
& human 
collaboration

Employs multiple specialized AI agents, 
prompt engineering techniques, and generative 

AI networks, enabling seamless automation 
with high-level human oversight

Relies on manual workflow management 
systems (e.g., checklists, flowcharts) with 

high human involvement and coordination

Innovation Identifies patterns and opportunities autonomously Relies on human creativity and expertise

Cost efficiency High setup cost but lower operational costs Ongoing labor and management costs

Reproducibility & 
explainability

Automated processes enhance reproducibility 
but may require additional measures to improve 

the explainability of AI decision logic

More transparent and explainable due to 
human-driven decision making; however, 

reproducibility may suffer from human variability
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4.1.4   |   Advanced Analytic Tools

Advanced analytic tools and existing domain expertise are seam-
lessly integrated into the workflow. This includes QSP and drug 
development tools (DDTs), as well as existing automated anal-
ysis and reporting systems. Automated analysis and reporting 
systems efficiently process data and generate comprehensive 
reports with minimal human intervention, thereby saving time 
and reducing the potential for error. Archiving systems provide 
robust solutions for storing data, analyses, and reports, ensur-
ing reproducibility and facilitating continuous improvement 
through retrospective review and learning.

By harmoniously combining the expertise of domain specialists, 
the precision of task-specific agents, the richness of diverse data 
sources, and the power of advanced analytic tools, these agentic 
workflows can enhance the efficiency and effectiveness of QCP 
and TS.

5   |   Opportunities and Challenges for Agentic 
Workflows in QCP and TS

As we noted earlier, the integration of agentic workflows into 
QCP and TS presents transformative opportunities, alongside 
challenges that must be thoughtfully addressed. In this section, 
we highlight some of those potential opportunities and critical 
challenges.

5.1   |   Opportunities

One of the most significant opportunities offered by agentic 
workflows is the streamlining of complex processes. By auto-
mating routine and time-consuming tasks—such as data entry, 
basic statistical analyses, and initial report drafting—agentic 
workflows can reduce manual errors and accelerate decision-
making. For example, in PK/PD modeling, agents can auto-
matically process patient data to generate preliminary models, 
allowing researchers to focus on refining and interpreting re-
sults rather than data preparation. This automation leads to a 
more efficient use of resources, enabling teams to handle larger 
workloads without proportional increases in staffing or time.

Agentic workflows also contribute to enhanced decision-
making by augmenting human expertise with real-time data 
analysis and evidence-based recommendations. These AI agents 
can quickly go through large amounts of data, find patterns, and 
point out anything unusual that might be missed during manual 
reviews. In clinical trial design, for instance, agents can run dif-
ferent simulations to help determine the best dosing strategies or 
group patients more effectively, which gives researchers helpful 
insights that lead to informed and accurate decisions.

Furthermore, the ability of agentic workflows to speed up re-
search can transform how new therapies and treatments are de-
veloped. For example, AI agents can automate literature reviews 
by scanning and summarizing the latest publications related to a 

FIGURE 3    |    An overview of an agentic workflow in quantitative clinical pharmacology (QCP) and translational clinical science (TCS). It illus-
trates a multi-step workflow in which a domain expert initiates queries for data or analytics. After that, AI agents are selected based on the task 
at hand—such as population PK, literature summarization, coding, or omics analysis—and execute API calls to the appropriate data sources. The 
resulting data are returned for further analysis, code generation, and visualization. At each stage, the domain expert reviews and approves output 
before final storage and reporting, ensuring reproducible results and maintaining clear provenance. API, application programming interface; Pop 
PK, population pharmacokinetics; RWD, real-world data.
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study or a disease, saving researchers a lot of time. They can also 
help generate new ideas by pulling together data from different 
sources, like genomic databases and clinical trial results, to un-
cover potential drug targets or biomarkers. This faster pace not 
only shortens research timelines but also increases the chances 
of making groundbreaking discoveries.

5.2   |   Challenges

Although agentic workflows bring exciting possibilities, there 
are several challenges to address to effectively implement agen-
tic workflows in QCP and TS. One significant obstacle is how to 
integrate them with the systems that organizations have been 
using for years. Many companies rely on well-established tools 
and processes, and introducing agentic workflows could mean 
making major changes, like updating software, retraining staff, 
and adjusting standard procedures. This process can be compli-
cated, take up resources, and temporarily disrupt ongoing proj-
ects. To overcome this, careful planning is needed, along with 
involvement from stakeholders and potentially a step-by-step 
approach to avoid too much disruption all at once.

Data quality and provenance are critical concerns when deploy-
ing agentic workflows. These systems need good data to work 
correctly, and if the data is not accurate, it can lead to mistakes, 
which can be a big problem in areas like patient care or drug devel-
opment. Ensuring data provenance—the detailed history of data 
origins and transformations—is essential for traceability and ac-
countability. Implementing robust data governance frameworks, 
including validation checks and metadata documentation, is nec-
essary to maintain the integrity of the workflows.

Maintaining reproducibility poses another significant challenge. 
Agentic workflows, by design, are dynamic; agents continuously 
learn and update their models based on new data and interactions. 
While this adaptability is advantageous, it can make reproducing 
specific results difficult if the system's state changes between anal-
yses. Reproducibility is a cornerstone of scientific research, and 
its absence can undermine confidence in the results generated by 
agentic workflows. To address this, mechanisms such as version 
control for models, detailed logging of agent activities, and the abil-
ity to snapshot the system state at specific points are vital.

Building trust among users and stakeholders is perhaps one of 
the most critical challenges. For agentic workflows to be em-
braced, clinicians, researchers, and regulatory bodies must have 
confidence in the system's outputs. To make that happen, it is 
important to be open about how the agents work, how they make 
decisions, and how they handle data. This includes providing 
easy-to-understand explanations, showing how the algorithms 
work, and making sure the agents' recommendations are clear 
and can be explained. Getting users involved in the development 
process and giving them the training they need can also help 
build trust and make it easier for people to accept and use these 
new systems.

Data privacy is another major concern, especially when deal-
ing with sensitive patient information or proprietary data. 
Traditional language models can sometimes struggle with en-
suring high levels of data security, particularly when working 

with external data or operating in cloud environments that 
may be vulnerable. To address this, agentic workflows must 
ensure that all data storage and management happen in secure 
systems that comply with regulations like HIPAA and GDPR. 
Additionally, for AI tools to be widely accepted in fields like 
QCP and TS, they must meet strict regulatory requirements that 
prioritize patient safety as well as data integrity. The dynamic 
and opaque nature of LLMs makes it difficult to meet regulatory 
requirements, as regulators need clear explanations of how de-
cisions are reached. To address this, agentic workflows need to 
thoroughly document all data processing and ensure they follow 
the necessary regulatory standards.

5.3   |   Strategies to Overcome Challenges

To effectively address these challenges, agentic workflows 
should enhance the abilities of domain experts by working col-
laboratively with them, augmenting human expertise rather 
than replacing it. Additionally, built-in quality assurance steps 
are essential, including human reviews and approvals of data 
provenance and structure, as well as the analytic code before 
use, to ensure the integrity and reliability of the workflow. 
Moreover, making sure that results from these systems can be 
consistently reproduced is really important. To do this, the data 
and code generated by agentic workflows need to be stored in se-
cure systems that meet regulatory standards. This helps protect 
data privacy while also ensuring that everything complies with 
global regulatory requirements.

It is unlikely that these developments can be achieved by the 
often-siloed efforts of individual actors in academia and indus-
try. Particularly with respect to the rapidly evolving ecosystem 
of LLMs, LLM frameworks, auxiliary technologies, and open-
source libraries for their integration and programmatic access, 
the clinical pharmacology and translational research communi-
ties need to federate efforts for the resource-effective application 
of these new technologies. We suggest that it is most efficient 
to aggregate generic functions for the use of LLMs as described 
above in open-source frameworks [29], in order to federate the 
maintenance required to remain up-to-date in the face of the 
breakneck pace of current developments. In addition to remov-
ing redundancies in the technical requirements of deploying 
agent-based systems, this will also introduce much-needed di-
versity into the ways we approach these intriguing but brittle 
technologies. Wherever possible, these contributions should be 
made in a collaborative, pre-competitive setting between aca-
demia and industry.

Furthermore, we propose that it is crucial to go beyond the cur-
rent LLM-driven developments for a sustainable implementa-
tion of the goals outlined above. LLMs have systematic biases 
and technical limitations that cannot currently be addressed 
due to their black-box nature, such as confabulation and lack 
of long-term attention. Guaranteeing semantic stability of the 
maintained data while upholding privacy-related and regula-
tory constraints requires robust, transparent knowledge man-
agement and continuous monitoring. Injecting domain expertise 
into agentic workflows, which often rely on generically trained 
LLMs without domain-specific behavioral training, requires 
efficient communication between knowledge management 
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systems and the acquisition of knowledge by the LLMs. The 
open frameworks we propose [29] should have intimate native 
integration with dedicated, semantically enriched knowledge 
stores [30]. Only in this manner can robust knowledge retrieval 
of information relevant to the agentic workflows be upheld and 
monitored effectively.

For monitoring the performance of agentic workflows, it is es-
sential that significant domain expertise and engineering effort 
go into establishing and maintaining highly specific bench-
marking suites that cover a wide range of tasks in the spec-
trum of QCP and TS. The need to federate benchmarking and 
monitoring is apparent for both performance optimization and 
regulatory compliance. Dedicated benchmarking tasks should 
be a cornerstone of open-source implementations of agentic 
workflows in all biomedical disciplines, allowing maximum 
transparency, oversight, and stakeholder access to these trans-
formative technologies. The most logical place for implementing 
benchmarks is alongside the open-source libraries that deploy 
the agentic workflows [29].

6   |   Case Studies and Practical Applications

6.1   |   Example #1: InsightRX Apollo-AI

InsightRX Apollo-AI is a practical example of how agentic 
workflows can support quantitative clinical pharmacologists. 
Currently under development, Apollo-AI aims to enhance the 
analytical capabilities of QCP and TS experts by offering tools 
for PK and PD analyses. The system addresses several limita-
tions of traditional LLM-based tools, such as the risk of hallu-
cinations—where models generate incorrect or nonsensical 
information—and challenges associated with user interface and 
workflow design.

To address these challenges, the design of the agent-based analy-
sis system was guided by several key principles: clearly defining 
agent roles and responsibilities, ensuring that each agent's tasks 
were narrowly focused, and maintaining clear human-agent 

interaction throughout the analysis process. The application was 
developed with a customized user interface (UI) and backend 
infrastructure. A well-designed UI/UX is essential not only for 
enhancing the platform's overall usability and ensuring reliable 
code output but also for understanding human intent through-
out the analysis process. A pure chat-based UI like ChatGPT is 
likely to be suboptimal for PKPD analysis. For example, user 
workflows for QCP/TCS analysis will require a user interface 
that can accommodate multiple analysis tasks such as data vi-
sualization, user collaboration, analysis management, and code 
editing. For modeling tasks, users should be able to develop 
and diagnose models in an iterative manner as well as submit 
multiple jobs simultaneously. While low-level APIs to LLMs are 
available to develop a robust analysis system, they often pres-
ent similar workflow challenges and are generally beyond the 
technical expertise of most users. Additionally, the underlying 
software infrastructure was customized to ensure robust data 
security and compliance throughout the analysis process.

The Apollo-AI system employs a variety of specialized AI agents, 
each with distinct roles (Figure 4), as defined below, that con-
tribute to a cohesive and efficient analytical workflow. Central 
to this architecture is the Agent–Computer Interface (ACI), 
which enhances the functionality and efficiency of these agents.

6.1.1   |   Conversational Agent

The Conversational Agent acts as the primary interface between 
the user and the system. It is specific role is to process user input, 
such as natural language queries, and translates them into tasks 
for other agents to execute. By leveraging example queries, anal-
ysis plans, and code snippets, the conversational agent ensures 
that the user's requests are accurately interpreted and carried 
out effectively.

For example, if a clinical pharmacologist wants to model a pa-
tient's drug concentration levels, the Conversational Agent will 
first confirm that the request pertains to population PK model-
ing with some preliminary analysis requirements before passing 

FIGURE 4    |    Overview of the Apollo-AI system agentic workflow.
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it on to a planning agent. This step is crucial for capturing user 
intent accurately and serves as a safeguard against downstream 
errors or hallucinations.

6.1.2   |   Planning Agent

The Planning Agent organizes the steps necessary to fulfill a 
user's analysis request, ensuring that everything is aligned with 
the user's objectives and any predefined study requirements. 
Before a plan is executed, the user has a chance to review, mod-
ify, and approve the plan developed by the agent, which serves 
as an important quality check. Similar to the conversational 
agent, the planning agent keeps the human in the loop by under-
standing user intent and making the underlying analysis pro-
cess transparent. For example, an analysis plan for a basic NCA 
could outline the data variables to be used, provide a step-by-
step guide for the analysis process (including which PK parame-
ters to include and the method for calculating terminal half-life), 
and specify how to handle data below the limit of quantification 
(BLQs), among other considerations. The user will then have the 
ability to directly modify the plan before proceeding with the 
analysis.

6.1.3   |   Task Agents

Task Agents are tools designed to perform tasks throughout the 
analysis process, like finding data outliers, excluding data, run-
ning analysis (e.g., exploratory analysis, pop-PK, NCA), making 
aesthetic modifications to plots/tables, and managing the anal-
ysis workflow. Task agents will follow the plan created by the 
Planning Agent and use the system's resources through the ACI 
to complete their tasks. For example, a Task Agent might flag 
and remove unusual data points that could throw off the results, 
helping to keep the analysis accurate. For an analysis task like 
NCA, the task agent could invoke specific R libraries or other 
computational packages to fulfill the analysis request. With ac-
cess to example code, outputs, and the ACI, Task Agents are able 
to do their tasks reliably.

6.1.4   |   Global Agent

The Global Agent monitors and coordinates the activities of all 
individual agents, is aware of the end user's interactions, and 
has access to the knowledge/data within the computer. Its pri-
mary objective is to offer timely recommendations and orches-
trate agent actions to achieve optimal outcomes. For example, 
during model development, the Global Agent will track all prior 
modeling runs, remain aware of the study context and data con-
straints, and offer suggestions to the end user throughout their 
workflow. These recommendations may include changes to the 
model structure, covariance matrix, or error model.

6.1.5   |   Agent–Computer Interface

The ACI is a crucial component of the Apollo-AI system de-
signed to enhance overall system performance by providing 
agents with an environment similar to the tools used by software 

engineers. This interface enables agents to navigate code reposi-
tories, access data, edit files, and execute tests. The ACI enables 
the retrieval of accurate and relevant knowledge to supplement 
an agent's response to help prevent downstream hallucinations. 
Specifically tailored to the operational characteristics of LLMs, 
the ACI mimics the interactive features of integrated develop-
ment environments (IDEs) used by developers. Both Task and 
Planning Agents within Apollo-AI leverage the ACI to search 
files, write code, view and edit data, as well as run analysis code.

6.1.6   |   Computational Infrastructure

Referred to as the “Computer,” the underlying computational 
infrastructure contains all the necessary data, files, PK/PD soft-
ware, and code and output examples. It interacts with the agents 
through the ACI, supplying the necessary resources for analysis 
and code execution. This part of the system acts as a repository 
for the AI agents, designed to have all of the necessary compo-
nents required to perform clinical pharmacology analysis.

While still in development, the Apollo-AI system exemplifies 
how a well-coordinated agentic workflow could be built for 
QCP. By giving each agent a specific role and making sure they 
work smoothly with the available technology, the system aims 
to address many of the limitations associated with traditional 
workflows.

6.2   |   Example 2: BioChatter Reflection Agent

The BioChatter Reflexion Agent showcases the application of 
agentic workflows in the biomedical field. Given the impor-
tance of retrieving accurate and relevant knowledge to sup-
plement LLM responses, we implemented an agent capable of 
querying semantically structured knowledge graphs (KGs). The 
BioChatter library [29], an open-source framework for the ap-
plication of LLMs in biomedical research, connects natively to 
semantically grounded KGs built by the BioCypher framework 
[30]. Through this connection, we facilitate the knowledge re-
trieval from a given KG via the generation of dedicated queries. 
While LLMs generally perform well in translating natural lan-
guage queries into structured formats, they often struggle with 
context, especially in zero-shot scenarios; that is, when they lack 
the possibility of correcting erroneous queries. To address this 
issue, we can introduce a reflexion workflow that can consider 
the quality of a query result and decide whether to pass on the re-
sult to the user or engage in a round of corrections. For complex 
questions, this can lead to a significant increase in robustness, 
especially when combined with an instruction to consider the 
quality of the answer with respect to the question by the user. A 
more detailed and technical description of the implementation 
can be found in the BioChatter documentation (https://​bioch​
atter.​org/​featu​res/​refle​xion-​agent/​​).

A practical example of the BioChatter Reflexion Agent in ac-
tion is its integration into the DECIDER ovarian cancer project 
(https://​www.​decid​erpro​ject.​eu). In this project, we are build-
ing a molecular tumor board application that allows physicians 
and clinical geneticists to discuss and stratify patients based on 
a holistic view of their integrated clinical and molecular data, 
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enriched by knowledge from relevant databases. We build a 
knowledge graph with patient information (clinical history, ge-
netic variants, biological processes, druggability information) 
and a vector database with relevant literature; we also allow 
connecting to relevant web APIs through a tool-calling mod-
ule. Those capabilities are available to the users via two distinct 
web applications with distinct purposes. The modular design of 
the developer toolkit can accommodate diverse resources and 
workflows. A vignette describing this use case, with links to live 
web applications, is available in the BioChatter documentation 
(https://​bioch​atter.​org/​vigne​ttes/​custom-​decid​er-​use-​case/​).

This generic framework can be extended to workflows involving 
arbitrarily many interconnected LLM- and non-LLM nodes with 
complex logic. Collecting these workflows in an open-source li-
brary has the advantage of federating work on commonly used 
workflows and sharing expertise and experience across actors 
in the space of QCP and TS. Particularly when adding tool use 
capabilities (https://​bioch​atter.​org/​featu​res/​rag/#​api-​calling), 
the potential of such workflows for saving time and nerves is 
considerable. Combined with customizable graphical user inter-
faces, which we provide open-source and with high flexibility 
to account for different workflows, we can facilitate access to 
these technologies for a wide range of clinical and translational 
scientists.

Importantly, this workflow is not without limitations. It is be-
coming clear that our current LLMs are not fully reliable; even 
for the simplest tasks, success cannot be guaranteed [31]. For 
this reason, we include an extensive benchmarking suite with 
the BioChatter library, including a living benchmark that is 
continuously expanded based on real-world applications. We 
recommend building such a benchmark for every application 
and all its use cases: knowledge graph or database queries, vec-
tor database retrieval, API calling, handover of tasks in agentic 
workflows, comprehension of the user's wishes, and many more. 
Particularly in solutions that are deployed in the real world, 
monitoring of the agentic systems' performance is elementary 
for building trust in these systems in the early phase of adoption. 
Otherwise, these systems may cause a wave of disillusionment 
and lack of adoption after the initial euphoria subsides [31].

7   |   Future Directions and Considerations

The future of agentic workflows in QCP and TS will be shaped 
by the development of domain-specific agents finely tuned to 
operate with precision and relevance within these fields. To 
achieve this, these agents will need to be trained on specific 
datasets and integrated seamlessly with tools and processes, 
like electronic health records and laboratory systems. The suc-
cess of this endeavor hinges on collaboration between experts in 
the field, AI researchers, clinicians, and industry professionals. 
Domain experts offer deep knowledge of pharmacological data 
and clinical practices, which is essential for creating scientifi-
cally accurate models. AI researchers bring expertise in ML and 
data processing, helping to adapt the technology for QCP and 
TS needs. Meanwhile, pharmaceutical companies and health-
care organizations provide practical insights for implementing 
and scaling these systems, as well as the resources needed for 
widespread use. By fostering interdisciplinary collaboration and 

pooling resources, the QCP and TS communities can accelerate 
the development of these systems, addressing challenges such as 
data interoperability and model validation.

Additionally, embracing collaborative development and open-
source frameworks, particularly those focused on agentic work-
flows, can give researchers a solid starting point for building 
new ideas. These tools make it easier to share progress, solve 
problems together, and improve transparency. A great example 
of this is how open-source projects like TensorFlow and PyTorch 
have helped AI development by being available to everyone and 
allowing people to contribute. Adopting this kind of approach 
can ensure that advancements in agentic workflow implementa-
tion in QCP and TS are shared, avoid repeating work, and make 
faster progress.

As these workflows become more common in QCP and TS, it 
is important to tackle potential biases in AI models, especially 
those involving patient data and treatment decisions. Bias can 
happen when the data used to train models do not fully repre-
sent all groups, which could lead to unequal care for some pop-
ulations. To prevent this, it is important to regularly check, test, 
and adjust the models to keep things fair. One way to do this 
is by including more diverse datasets, using fairness techniques 
in the algorithms, and bringing ethicists into the development 
process. By focusing on these ethical standards, we can make 
sure patient care is fair and build trust in AI systems among cli-
nicians and patients alike.

As these workflows evolve, regulatory considerations will play 
an increasingly important role in balancing innovation with 
patient safety and data integrity. Recent regulatory initiatives, 
such as the FDA's January 2025 draft guidance, “Considerations 
for the Use of Artificial Intelligence to Support Regulatory 
Decision-Making for Drug and Biological Products,” [32] un-
derscore the critical importance of AI model risk assessment. 
The guidance emphasizes that a thorough understanding of 
the model's training data, performance metrics, and decision-
making processes is necessary to ensure reliability and trans-
parency. In the context of agentic workflows in QCP and TS, it 
is imperative to integrate systematic risk assessment methodolo-
gies. Such methodologies should involve rigorous validation and 
benchmarking, detailed documentation of model development 
and updates, and the implementation of robust risk mitigation 
strategies. These measures not only align with regulatory expec-
tations but also enhance trust and reliability, ultimately ensur-
ing that AI-driven analyses meet the high standards required for 
clinical decision-making and regulatory acceptance.

Furthermore, as agentic workflows gain prevalence, there will 
be an increasing demand for regulatory frameworks that can 
keep pace with technological advancements while ensuring pa-
tient safety and data integrity. Engaging proactively with reg-
ulatory bodies like the FDA or EMA can help shape policies 
that balance innovation with oversight. Establishing standard-
ized benchmarking protocols and compliance guidelines will 
be vital for sustaining the performance and reliability of these 
dynamic systems. Long-term monitoring, coupled with periodic 
reviews and updates, will ensure that agentic workflows con-
tinue to meet regulatory requirements and adapt to new scien-
tific insights.
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8   |   Conclusion

The integration of AI agents and agentic workflows into QCP 
and TS represents a significant leap forward in processing com-
plex datasets, making informed decisions, and accelerating 
research and development. However, the path to widespread 
adoption is accompanied by challenges, including ensuring data 
privacy and security, overcoming technical limitations, and 
achieving regulatory acceptance. Overcoming these challenges 
will take a team effort, bringing together experts from different 
fields to collaborate. Additionally, developing specialized agents 
and setting up strong regulatory guidelines are also key steps. 
By working with domain experts, AI researchers, clinicians, and 
industry leaders, we can create agentic workflows that are both 
scientifically sound and practical for real-world use. Moreover, 
supporting open-source projects and sharing resources will help 
speed up innovation and ensure that progress is accessible to 
everyone in the field.

In conclusion, looking ahead, it is important to balance tech-
nological innovation with ethical considerations and regulatory 
standards to advance QCP and TS. It is crucial to understand 
potential biases in AI models and collaborate with regulators as 
well as domain experts and AI researchers to ensure fairness, 
patient safety, and data integrity while using AI models. Agentic 
workflows hold a lot of promise for unlocking new innovations 
to our workflows that could lead to better patient care and more 
efficient drug development processes.
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